The Biochemistry and Epigenetics of Epilepsy: Focus on Adenosine and Glycine
نویسنده
چکیده
Epilepsy, one of the most prevalent neurological conditions, presents as a complex disorder of network homeostasis characterized by spontaneous non-provoked seizures and associated comorbidities. Currently used antiepileptic drugs have been designed to suppress neuronal hyperexcitability and thereby to suppress epileptic seizures. However, the current armamentarium of antiepileptic drugs is not effective in over 30% of patients, does not affect the comorbidities of epilepsy, and does not prevent the development and progression of epilepsy (epileptogenesis). Prevention of epilepsy and its progression remains the Holy Grail for epilepsy research and therapy development, requiring novel conceptual advances to find a solution to this urgent medical need. The methylation hypothesis of epileptogenesis suggests that changes in DNA methylation are implicated in the progression of the disease. In particular, global DNA hypermethylation appears to be associated with chronic epilepsy. Clinical as well as experimental evidence demonstrates that epilepsy and its progression can be prevented by biochemical manipulations and those that target previously unrecognized epigenetic functions contributing to epilepsy development and maintenance of the epileptic state. This mini-review will discuss, epigenetic mechanisms implicated in epileptogenesis and biochemical interactions between adenosine and glycine as a conceptual advance to understand the contribution of maladaptive changes in biochemistry as a major contributing factor to the development of epilepsy. New findings based on biochemical manipulation of the DNA methylome suggest that: (i) epigenetic mechanisms play a functional role in epileptogenesis; and (ii) therapeutic reconstruction of the epigenome is an effective antiepileptogenic therapy.
منابع مشابه
The role of adenosine A1 receptors on post seizure depression period in rats
Epilepsy is among the most common disorders of the central nervous system and there is not an absolute method for its treatment. It has been shown that each seizure has a depressing effect on the following seizure. Thus, finding the mechanisms responsible in this phenomenon can improve our knowledge toward new ways for epilepsy treatment. In this study, the role of adenosine A1 receptors in ...
متن کاملP-115: The Role of G22A Adenosine Deaminase 1 Gene Polymorphism and The Activities of ADA Isoenzymes in Fertile and Infertile Men
Background Some studies have revealed enzymatic and non-enzymatic roles of adenosine deaminase (ADA) in male reproductive system such as regulating adenylate cyclase activity by decreasing adenosine concentration, helping to interaction between prostasomes and spermatozoa. MaterialsAndMethods frequency distribution of ADA1 G22A alleles and genotypes in 200 fertile and 200 infertile men. The pol...
متن کاملThermal Analysis of Adenosine Deaminase in the Presence of Sodium N-Dodecyl Sulphate
The thermal denaturation of adenosine deaminase (ADA) has been investigated in the presence of sodium n-dodecyl sulphate (SDS) over the temperature range of (293-363K) in 2.5 mM phosphate buffer, pH 6.4 by temperature scanning spectroscopy. The interaction of SDS caused the folding of adenosine deaminanse resulting in a decrease of TH (temperature of minimum solubility), TS<...
متن کاملAssessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats
Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...
متن کاملADENOSINE DEAMINASE ACTIVITY IN ESTROGEN RECEPTOR POSITIVE AND NEGATIVE HUMAN BREAST CANCER CELL LINES
ABSTRACT Background: The aims of this study were to assay the activity of adenosine deaminase (ADA) in estrogen receptor positive (MCF-7) and negative (MDA-MB468) breast cancer cell lines. Methods: MDA-MB468 and MCF-7 breast cancer cell lines were cultured in complete medium, striped serum with and without 0.0 1~-LM diethylstilbestrol (DES), complete medium in the presence and absence of 111M ...
متن کامل